Downloads:

255

Downloads of v 2.0.3:

65

Last Update:

02 Dec 2020

Package Maintainer(s):

Software Author(s):

  • Memurai

Tags:

memurai cache redis-compatible redis-client database

Memurai Developer (Portable)

  • 1
  • 2
  • 3

2.0.3 | Updated: 02 Dec 2020

Downloads:

255

Downloads of v 2.0.3:

65

Maintainer(s):

Software Author(s):

  • Memurai

  • 1
  • 2
  • 3
Memurai Developer (Portable) 2.0.3

  • 1
  • 2
  • 3

All Checks are Passing

3 Passing Tests


Validation Testing Passed


Verification Testing Passed

Details

Scan Testing Successful:

No detections found in any package files

Details

To install Memurai Developer (Portable), run the following command from the command line or from PowerShell:

>

To upgrade Memurai Developer (Portable), run the following command from the command line or from PowerShell:

>

To uninstall Memurai Developer (Portable), run the following command from the command line or from PowerShell:

>

NOTE: This applies to both open source and commercial editions of Chocolatey.

1. Ensure you are set for organizational deployment

Please see the organizational deployment guide

  • Open Source or Commercial:
    • Proxy Repository - Create a proxy nuget repository on Nexus, Artifactory Pro, or a proxy Chocolatey repository on ProGet. Point your upstream to https://community.chocolatey.org/api/v2. Packages cache on first access automatically. Make sure your choco clients are using your proxy repository as a source and NOT the default community repository. See source command for more information.
    • You can also just download the package and push it to a repository Download

3. Enter your internal repository url

(this should look similar to https://community.chocolatey.org/api/v2)

4. Choose your deployment method:


choco upgrade memurai-developer.portable -y --source="'STEP 3 URL'" [other options]

See options you can pass to upgrade.

See best practices for scripting.

Add this to a PowerShell script or use a Batch script with tools and in places where you are calling directly to Chocolatey. If you are integrating, keep in mind enhanced exit codes.

If you do use a PowerShell script, use the following to ensure bad exit codes are shown as failures:


choco upgrade memurai-developer.portable -y --source="'STEP 3 URL'"
$exitCode = $LASTEXITCODE

Write-Verbose "Exit code was $exitCode"
$validExitCodes = @(0, 1605, 1614, 1641, 3010)
if ($validExitCodes -contains $exitCode) {
  Exit 0
}

Exit $exitCode

- name: Ensure memurai-developer.portable installed
  win_chocolatey:
    name: memurai-developer.portable
    state: present
    version: 2.0.3
    source: STEP 3 URL

See docs at https://docs.ansible.com/ansible/latest/modules/win_chocolatey_module.html.


chocolatey_package 'memurai-developer.portable' do
  action    :install
  version  '2.0.3'
  source   'STEP 3 URL'
end

See docs at https://docs.chef.io/resource_chocolatey_package.html.


Chocolatey::Ensure-Package
(
    Name: memurai-developer.portable,
    Version: 2.0.3,
    Source: STEP 3 URL
);

Requires Otter Chocolatey Extension. See docs at https://inedo.com/den/otter/chocolatey.


cChocoPackageInstaller memurai-developer.portable
{
   Name     = 'memurai-developer.portable'
   Ensure   = 'Present'
   Version  = '2.0.3'
   Source   = 'STEP 3 URL'
}

Requires cChoco DSC Resource. See docs at https://github.com/chocolatey/cChoco.


package { 'memurai-developer.portable':
  provider => 'chocolatey',
  ensure   => '2.0.3',
  source   => 'STEP 3 URL',
}

Requires Puppet Chocolatey Provider module. See docs at https://forge.puppet.com/puppetlabs/chocolatey.


salt '*' chocolatey.install memurai-developer.portable version="2.0.3" source="STEP 3 URL"

See docs at https://docs.saltstack.com/en/latest/ref/modules/all/salt.modules.chocolatey.html.

5. If applicable - Chocolatey configuration/installation

See infrastructure management matrix for Chocolatey configuration elements and examples.

This package is likely a meta/virtual (*) or an installer (*.install) or portable (*.portable) application package.

  • Meta/virtual (*) - has a dependency on the *.install or the *.portable package - it is provided for discoverability and for other packages to take a dependency on.
  • Portable (*.portable/*.commandline (deprecated naming convention)/*.tool (deprecated naming convention)) - usually zips or archives that require no administrative access to install.
  • Install (*.install/*.app (deprecated naming convention)) - uses native installers, usually requires administrative access to install.

Learn more about chocolatey's distinction of installed versus portable apps and/or learn about this kind of package.

This package was approved as a trusted package on 03 Dec 2020.

Description

Memurai is a Redis-5-compatible cache and data store for Windows. It’s designed to provide the reliability and performance demanded by enterprise Windows environments.

Just like Redis, Memurai uses an in-memory data set to achieve great performance at scale, and Memurai supports all the Redis features that you know and love, such as persistence, replication, transactions, LUA scripting, high-availability, pub/sub, cluster, modules, streams, and LRU eviction. In fact, it supports all of the Redis API 5 eviction policies.


tools\LICENSE.txt
JANEA SYSTEMS, INC. D/B/A MEMURAI 
MEMURAI DEVELOPER SOFTWARE LICENSE TERMS

These license terms are an agreement between you and Janea Systems, Inc. d/b/a Memurai ("Memurai") (or one of its affiliates). 
They apply to the software named above and any Memurai services or software updates (except to the extent such services or updates are accompanied by new or additional terms, 
in which case those different terms apply prospectively and do not alter your or Memurai's rights relating to pre-updated software or services).  
IF YOU COMPLY WITH THESE LICENSE TERMS, YOU HAVE THE RIGHTS BELOW. BY USING THE SOFTWARE, YOU ACCEPT THESE TERMS. IF YOU DO NOT ACCEPT THEM, DO NOT USE THE SOFTWARE. 

IMPORTANT NOTICE: AUTOMATIC UPDATES TO PREVIOUS VERSIONS OF MEMURAI SOFTWARE. 
If this software is installed on servers or devices running prior versions of any supported editions of Memurai Software (or components of any of them) 
this software will automatically update and replace certain files or features within those editions with files from this software.  
This feature cannot be switched off. Removal of these files may cause errors in the software and the original files may not be recoverable. 
By installing this software on a server or device that is running such editions you consent to these updates in all such editions and copies of Memurai Software (including components of any of them) running on that server or device.

1. INSTALLATION AND USE RIGHTS.
a. General. You may install and use copies of the software on any device, including third party shared devices, to design, develop, test and demonstrate your programs. You may not use the software in a production environment.
b. Demonstration. Any person that has access to your internal network may install and use copies of the software to demonstrate use of your programs with the software. Those copies may not be used for any other purpose.
c. User Testing. Your end users may access the software to perform acceptance tests on your programs.

2. ADDITIONAL LICENSING REQUIREMENTS AND/OR USE RIGHTS. Except for Sections 9 through 15 of this Agreement, the terms and conditions of this Agreement shall not apply to any Open Source Software accompanying the Memurai Developer Software. 
Any such Open Source Software is provided under the terms of the open source license agreement or copyright notice accompanying such Open Source Software or in any open source licenses file accompanying the Memurai Developer Software. 
All such Open Source Software, including URLs to the respective licenses ("Open Source Software Licenses") as available on April 15, 2020, is set forth in Exhibit A to this Agreement, and accordingly, 
by virtue of you agreeing to the terms of this Agreement, you represent and warrant that you shall further comply with the terms and conditions of such specified Open Source Software Licenses and with any additional or updated open source licenses in the file accompanying the Memurai Developer Software.

3. DATA COLLECTION. The software may collect information about you and your use of the software and send that to Memurai. Memurai may use this information to provide services and improve Memurai's products and services. 
Your opt-out rights, if any, are described in the product documentation. Some features in the software may enable collection of data from users of your applications that access or use the software. 
If you use these features to enable data collection in your applications, you must comply with applicable law, including getting any required user consent, and maintain a prominent privacy policy that accurately informs users about how you use, collect, and share their data.

4. THIRD PARTY SOFTWARE. The software may include third party applications that are licensed to you under this agreement or under their own terms. 
Even if such applications are governed by other agreements, the disclaimer, limitations on, and exclusions of damages below also apply to the extent allowed by applicable law. 

5. BENCHMARK TESTING. You must obtain Memurai's prior written approval to disclose to a third party the results of any benchmark test of the software. 

6. SCOPE OF LICENSE. The software is licensed, not sold. Memurai reserves all other rights. Unless applicable law gives you more rights despite this limitation, you will not (and have no rights to):
- work around any technical limitations in the software that only allow you to use it in certain ways;
- reverse engineer, decompile or disassemble the software;
- remove, minimize, block, or modify any notices of Memurai or its suppliers in the software;
- use the software in any way that is against the law or to create or propagate malware;
- share or distribute the software;
- make more copies of the software than specified in this agreement or allowed by applicable law, despite this limitation;
- publish the software, including any application programming interfaces included in the software, for others to copy;
- share, distribute, or lend the software, provide the software as a hosted solution for others to use in production environments, or transfer the software or this agreement to any third party.

7. UPDATES.  The software may periodically check for updates and download and install them for you. You may obtain updates only from Memurai or authorized sources. 
Memurai may need to update your system to provide you with updates. You agree to receive these automatic updates without any additional notice. 
Updates may not include or support all existing software features, services, or peripheral devices.  

8. DOCUMENTATION. Any person that has valid access to your computer or internal network may copy and use the documentation for your internal, reference purposes.

9. EXPORT RESTRICTIONS. The Memurai Developer Software is provided subject to the export control laws, rules, regulations, restrictions and national security controls of the United States and other applicable foreign agencies. 
Diversion, including but not limited to the export or re-export of the Memurai Developer Software where such is contrary to U.S. or foreign law, is prohibited. 
Without limiting the foregoing, you agree that (a) you are not, and are not acting on behalf of, any person who is a citizen, national, or resident of, or who is controlled by the government of, Cuba, Iran, North Korea, Sudan, or Syria, 
or any other country to which the United States has prohibited export transactions, including (but not limited to) trade embargos; 
(b) you are not, and are not acting on behalf of, any person or entity listed on the U.S. Treasury Department list of Specially Designated Nationals and Blocked Persons, or the U.S. Commerce Department Denied Persons List or Entity List; 
and (c) you will not use the Memurai Developer Software for, and will not permit the Memurai Developer Software to be used for, any purposes prohibited by law, including (without limitation) 
for any prohibited development, design, manufacture or production of missiles or nuclear, chemical or biological weapons.

10. SUPPORT SERVICES. Memurai is not obligated under this agreement to provide any support services for the software. Any support provided is "as is", "with all faults", and without warranty of any kind.

11. ENTIRE AGREEMENT. This agreement, and any other terms Memurai may provide for supplements, updates, or third-party applications, is the entire agreement for the software.

12. APPLICABLE LAW AND PLACE TO RESOLVE DISPUTES. If you acquired the software in the United States or Canada, the laws of the state or province where you live (or, if a business, where your principal place of business is located) govern the interpretation of this agreement, 
claims for its breach, and all other claims (including consumer protection, unfair competition, and tort claims), regardless of conflict of laws principles. 
If you acquired the software in any other country, its laws apply. Regardless of whether U.S. federal jurisdiction exists, you and Memurai consent to exclusive jurisdiction and venue in the federal court in King County, Washington for all disputes heard in court.

13. CONSUMER RIGHTS; REGIONAL VARIATIONS. This agreement describes certain legal rights. You may have other rights, including consumer rights, under the laws of your state or country. 
Separate and apart from your relationship with Memurai, you may also have rights with respect to the party from which you acquired the software. This agreement does not change those other rights if the laws of your state or country do not permit it to do so.

14. DISCLAIMER OF WARRANTY. THE SOFTWARE IS LICENSED "AS IS." YOU BEAR THE RISK OF USING IT. MEMURAI GIVES NO EXPRESS WARRANTIES, GUARANTEES, OR CONDITIONS. 
TO THE EXTENT PERMITTED UNDER APPLICABLE LAWS, MEMURAI EXCLUDES ALL IMPLIED WARRANTIES, INCLUDING MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT.

15.LIMITATION ON AND EXCLUSION OF DAMAGES. IF YOU HAVE ANY BASIS FOR RECOVERING DAMAGES DESPITE THE PRECEDING DISCLAIMER OF WARRANTY, YOU CAN RECOVER FROM MEMURAI AND ITS SUPPLIERS ONLY DIRECT DAMAGES UP TO U.S. 
TEN DOLLARS ($10.00). YOU CANNOT RECOVER ANY OTHER DAMAGES, INCLUDING CONSEQUENTIAL, LOST PROFITS, SPECIAL, INDIRECT, OR INCIDENTAL DAMAGES.
This limitation applies to (a) anything related to the software, services, content (including code) on third party Internet sites, or third party applications; 
and (b) claims for breach of contract, warranty, guarantee, or condition; strict liability, negligence, or other tort; or any other claim; in each case to the extent permitted by applicable law.
It also applies even if Memurai knew or should have known about the possibility of the damages. 
The above limitation or exclusion may not apply to you because your state, province, or country may not allow the exclusion or limitation of incidental, consequential, or other damages.


EXHIBIT A
Open Source Software and Open Source Software Licenses 

The Memurai Developer Software provided under this Agreement is derived from both Redis and from a fork by Microsoft Open Technologies.

Subject to Section 2 of this Agreement, which shall control and prevail with respect to all of the following licenses, you agree to abide by the terms and conditions of said licenses:

1. The Redis license, as set forth at: https://github.com/antirez/redis/blob/unstable/COPYING
2. The Microsoft Open Technologies license, as set forth at: https://github.com/MicrosoftArchive/redis/blob/3.0/license.txt
3. The following additional four licenses, as set forth at:
a) https://github.com/MicrosoftArchive/redis/blob/3.0/deps/hiredis/COPYING
b) https://github.com/MicrosoftArchive/redis/blob/3.0/deps/jemalloc-win/LICENSE
c) https://github.com/MicrosoftArchive/redis/blob/3.0/deps/jemalloc-win/COPYING
d) https://github.com/MicrosoftArchive/redis/blob/3.0/deps/lua/COPYRIGHT
d) https://github.com/MicrosoftArchive/redis/blob/3.0/deps/lua/COPYRIGHT
tools\memurai-check-aof.exe
md5: E2DCF14EE6D1A7456442EF2985C0375D | sha1: 133AF1FBBBF619CFAFEC7C30BE330A645676CB32 | sha256: 315ABF3192E5C1A5B46CF5F4BCB636BDC9DA68A68A0B510F7BE5CA7E1A131A08 | sha512: 84CA72DB53ABF13702D6A4A0B597D63BFBE4C20E373B57441A597E00BFD2655AA101589EC6A9188C5CE8E67A92D2BCF2553659E9FE8EB4ACF5575A9899AE20D9
tools\memurai-check-rdb.exe
md5: ACBFABFC2EF9FEB2D66054EFAE88A887 | sha1: A24F78FD5AF0E41DADC3C633A456C9A568B0675A | sha256: 813168B303A092388F3B781FA351B6DDA593F07719109416D9083619089B216A | sha512: 280DCF0E1D60121395160696E88FC970D380A1C3E058B19E44B3C72CDFD2549CDDE4526D85A63C2C062D953B27BD9D1DAD1D34619784E87684EAFB57D7F632B6
tools\memurai-cli.exe
md5: 918039AC4CC32E386B3D1B1FCC6A7066 | sha1: 219B00A6601F2477EE46DE7CB3C1321D153F21EA | sha256: 1ABB382DED77AB7D3F2DDFE7C7E8CAB1ECC8DC3952514DE70D0382B06E5F0029 | sha512: D8D35D36E039B2AFAB7B2A145F4F271F39A46E1711B26AAE1EE7214B758F4F67D00EC2F21CBEF7F92A7C9076414A8A5BE56C8170057353996DE4070E6F944979
tools\memurai-services.dll
md5: AFC6743C5A14E8C054B287CB72DDC6D8 | sha1: 5A729794599AD5E67FA5ADD2E8DB8ACCF8CD3E41 | sha256: C98FADD02EC8557628B6790E5F4D4E58A71F522CADDE5D9D36FDAA0DF11051F2 | sha512: 8D5E826E495B40EEA6DB34BE17C3DECC68EF6E8C504ADD0A707B1193F1488A89E6241A07BC3BDAD26A0CAD8B717A57EF08779DE80EF58233297821859D0B2AFE
tools\memurai.exe
md5: 43FA1749F8034B39A16E4A94F9066550 | sha1: 766CC9AC871ABBAF253501F17A7D329D9404EDE9 | sha256: 0C3552E224EAFA854CACE0D2846023DB32E16A89C221B24CDCA7D1020129ACB3 | sha512: 636FB2D44C1349F7D7745421CBCADA69A4478057A1D813BDCBF1A04595312C9C906941355AFCB1C5CB7C811A7327D612B2A3F44586881638287F9A6A1350AE3E
tools\samples\memurai.conf
# Memurai configuration file example.
#
# Note that in order to read the configuration file, Memurai must be
# started with the file path as first argument:
#
# memurai.exe \path\to\memurai.conf

# Note on units: when memory size is needed, it is possible to specify
# it in the usual form of 1k 5GB 4M and so forth:
#
# 1k => 1000 bytes
# 1kb => 1024 bytes
# 1m => 1000000 bytes
# 1mb => 1024*1024 bytes
# 1g => 1000000000 bytes
# 1gb => 1024*1024*1024 bytes
#
# units are case insensitive so 1GB 1Gb 1gB are all the same.

################################## INCLUDES ###################################

# Include one or more other config files here.  This is useful if you
# have a standard template that goes to all Memurai servers but also need
# to customize a few per-server settings.  Include files can include
# other files, so use this wisely.
#
# Notice option "include" won't be rewritten by command "CONFIG REWRITE"
# from admin or Memurai Sentinel. Since Memurai always uses the last processed
# line as value of a configuration directive, you'd better put includes
# at the beginning of this file to avoid overwriting config change at runtime.
#
# If instead you are interested in using includes to override configuration
# options, it is better to use include as the last line.
#
# include .\path\to\local.conf
# include c:\path\to\other.conf

################################## MODULES #####################################

# Load modules at startup. If the server is not able to load modules
# it will abort. It is possible to use multiple loadmodule directives.
#
# loadmodule /path/to/my_module.so
# loadmodule /path/to/other_module.so

################################## NETWORK #####################################

# By default, if no "bind" configuration directive is specified, Memurai listens
# for connections from all the network interfaces available on the server.
# It is possible to listen to just one or multiple selected interfaces using
# the "bind" configuration directive, followed by one or more IP addresses.
#
# Examples:
#
# bind 192.168.1.100 10.0.0.1
# bind 127.0.0.1 ::1
#
# ~~~ WARNING ~~~ If the computer running Memurai is directly exposed to the
# internet, binding to all the interfaces is dangerous and will expose the
# instance to everybody on the internet. So by default we uncomment the
# following bind directive, that will force Memurai to listen only into
# the IPv4 lookback interface address (this means Memurai will be able to
# accept connections only from clients running into the same computer it
# is running).
#
# IF YOU ARE SURE YOU WANT YOUR INSTANCE TO LISTEN TO ALL THE INTERFACES
# JUST COMMENT THE FOLLOWING LINE.
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
bind 127.0.0.1

# Protected mode is a layer of security protection, in order to avoid that
# Memurai instances left open on the internet are accessed and exploited.
#
# When protected mode is on and if:
#
# 1) The server is not binding explicitly to a set of addresses using the
#    "bind" directive.
# 2) No password is configured.
#
# The server only accepts connections from clients connecting from the
# IPv4 and IPv6 loopback addresses 127.0.0.1 and ::1, and from Unix domain
# sockets.
#
# By default protected mode is enabled. You should disable it only if
# you are sure you want clients from other hosts to connect to Memurai
# even if no authentication is configured, nor a specific set of interfaces
# are explicitly listed using the "bind" directive.
protected-mode yes

# Accept connections on the specified port, default is 6379 (IANA #815344).
# If port 0 is specified Memurai will not listen on a TCP socket.
port 6379

# TCP listen() backlog.
#
# In high requests-per-second environments you need an high backlog in order
# to avoid slow clients connections issues.
tcp-backlog 511

# Close the connection after a client is idle for N seconds (0 to disable)
timeout 0

# TCP keepalive.
#
# If non-zero, use SO_KEEPALIVE to send TCP ACKs to clients in absence
# of communication. This is useful for two reasons:
#
# 1) Detect dead peers.
# 2) Take the connection alive from the point of view of network
#    equipment in the middle.
#
# A reasonable value for this option is 300 seconds
tcp-keepalive 300

################################# GENERAL #####################################

# If a pid file is specified, Memurai writes it where specified at startup
# and removes it at exit.
#
# Creating a pid file is best effort: if Memurai is not able to create it
# nothing bad happens, the server will start and run normally.
# pidfile C:\tmp\memurai_6379.pid

# Specify the server verbosity level.
# This can be one of:
# debug (a lot of information, useful for development/testing)
# verbose (many rarely useful info, but not a mess like the debug level)
# notice (moderately verbose, what you want in production probably)
# warning (only very important / critical messages are logged)
loglevel notice

# Specify the log file name. Also the empty string can be used to force
# Memurai to log on the standard output. Note that if you use standard
# output for logging when running as a Windows service, the log will not
# be shown.
logfile "memurai-log.txt"

# Specify the verbosity level for the Windows Event Log
# This can be one of:
# debug (a lot of information, useful for development/testing)
# verbose (many rarely useful info, but not a mess like the debug level)
# notice (moderately verbose, what you want in production probably)
# warning (only very important / critical messages are logged)
# off (no messages are logged)
# (Memurai-specific)
winlog-level notice

# Specify a name for this server instance. Useful for distinguishing between
# multiple instances in the logs.
# If not empty, this is displayed at the beginning of every Windows Event Log
# message, and also in one of the first lines of the logfile.
# (Memurai-specific)
instance-name ""

# Set the number of databases. The default database is DB 0, you can select
# a different one on a per-connection basis using SELECT <dbid> where
# dbid is a number between 0 and 'databases'-1
databases 16

################################ SNAPSHOTTING  ################################
#
# Save the DB on disk:
#
#   save <seconds> <changes>
#
#   Will save the DB if both the given number of seconds and the given
#   number of write operations against the DB occurred.
#
#   In the example below the behaviour will be to save:
#   after 900 sec (15 min) if at least 1 key changed
#   after 300 sec (5 min) if at least 10 keys changed
#   after 60 sec if at least 10000 keys changed
#
#   Note: you can disable saving completely by commenting out all "save" lines.
#
#   It is also possible to remove all the previously configured save
#   points by adding a save directive with a single empty string argument
#   like in the following example:
#
#   save ""

save 900 1
save 300 10
save 60 10000

# By default Memurai will stop accepting writes if RDB snapshots are enabled
# (at least one save point) and the latest background save failed.
# This will make the user aware (in a hard way) that data is not persisting
# on disk properly, otherwise chances are that no one will notice and some
# disaster will happen.
#
# If the background saving process will start working again Memurai will
# automatically allow writes again.
#
# However if you have setup your proper monitoring of the Memurai server
# and persistence, you may want to disable this feature so that Memurai will
# continue to work as usual even if there are problems with disk,
# permissions, and so forth.
stop-writes-on-bgsave-error yes

# Compress string objects using LZF when dump .rdb databases?
# For default that's set to 'yes' as it's almost always a win.
# If you want to save some CPU in the saving child set it to 'no' but
# the dataset will likely be bigger if you have compressible values or keys.
rdbcompression yes

# Since version 5 of RDB a CRC64 checksum is placed at the end of the file.
# This makes the format more resistant to corruption but there is a performance
# hit to pay (around 10%) when saving and loading RDB files, so you can disable it
# for maximum performances.
#
# RDB files created with checksum disabled have a checksum of zero that will
# tell the loading code to skip the check.
rdbchecksum yes

# The filename where to dump the DB
dbfilename dump.rdb

# The working directory.
#
# The DB will be written inside this directory, with the filename specified
# above using the 'dbfilename' configuration directive.
#
# The Append Only File will also be created inside this directory.
#
# Note that you must specify a directory here, not a file name.
dir ./

################################# REPLICATION #################################

# Master-Slave replication. Use slaveof to make a Memurai instance a copy of
# another Memurai server. A few things to understand ASAP about Memurai replication.
#
# 1) Memurai replication is asynchronous, but you can configure a master to
#    stop accepting writes if it appears to be not connected with at least
#    a given number of slaves.
# 2) Memurai slaves are able to perform a partial resynchronization with the
#    master if the replication link is lost for a relatively small amount of
#    time. You may want to configure the replication backlog size (see the next
#    sections of this file) with a sensible value depending on your needs.
# 3) Replication is automatic and does not need user intervention. After a
#    network partition slaves automatically try to reconnect to masters
#    and resynchronize with them.
#
# slaveof <masterip> <masterport>

# If the master is password protected (using the "requirepass" configuration
# directive below) it is possible to tell the slave to authenticate before
# starting the replication synchronization process, otherwise the master will
# refuse the slave request.
#
# masterauth <master-password>

# When a slave loses its connection with the master, or when the replication
# is still in progress, the slave can act in two different ways:
#
# 1) if slave-serve-stale-data is set to 'yes' (the default) the slave will
#    still reply to client requests, possibly with out of date data, or the
#    data set may just be empty if this is the first synchronization.
#
# 2) if slave-serve-stale-data is set to 'no' the slave will reply with
#    an error "SYNC with master in progress" to all the kind of commands
#    but to INFO and SLAVEOF.
#
slave-serve-stale-data yes

# You can configure a slave instance to accept writes or not. Writing against
# a slave instance may be useful to store some ephemeral data (because data
# written on a slave will be easily deleted after resync with the master) but
# may also cause problems if clients are writing to it because of a
# misconfiguration.
#
# By default slaves are read-only.
#
# Note: read only slaves are not designed to be exposed to untrusted clients
# on the internet. It's just a protection layer against misuse of the instance.
# Still a read only slave exports by default all the administrative commands
# such as CONFIG, DEBUG, and so forth. To a limited extent you can improve
# security of read only slaves using 'rename-command' to shadow all the
# administrative / dangerous commands.
slave-read-only yes

# Replication SYNC strategy: disk or socket.
#
# -------------------------------------------------------
# WARNING: DISKLESS REPLICATION IS EXPERIMENTAL CURRENTLY
# -------------------------------------------------------
#
# New slaves and reconnecting slaves that are not able to continue the replication
# process just receiving differences, need to do what is called a "full
# synchronization". An RDB file is transmitted from the master to the slaves.
# The transmission can happen in two different ways:
#
# 1) Disk-backed: The Memurai master creates a new process that writes the RDB
#                 file on disk. Later the file is transferred by the parent
#                 process to the slaves incrementally.
# 2) Diskless: The Memurai master creates a new process that directly writes the
#              RDB file to slave sockets, without touching the disk at all.
#
# With disk-backed replication, while the RDB file is generated, more slaves
# can be queued and served with the RDB file as soon as the current child producing
# the RDB file finishes its work. With diskless replication instead once
# the transfer starts, new slaves arriving will be queued and a new transfer
# will start when the current one terminates.
#
# When diskless replication is used, the master waits a configurable amount of
# time (in seconds) before starting the transfer in the hope that multiple slaves
# will arrive and the transfer can be parallelized.
#
# With slow disks and fast (large bandwidth) networks, diskless replication
# works better.
repl-diskless-sync no

# When diskless replication is enabled, it is possible to configure the delay
# the server waits in order to spawn the child that transfers the RDB via socket
# to the slaves.
#
# This is important since once the transfer starts, it is not possible to serve
# new slaves arriving, that will be queued for the next RDB transfer, so the server
# waits a delay in order to let more slaves arrive.
#
# The delay is specified in seconds, and by default is 5 seconds. To disable
# it entirely just set it to 0 seconds and the transfer will start ASAP.
repl-diskless-sync-delay 5

# Slaves send PINGs to server in a predefined interval. It's possible to change
# this interval with the repl_ping_slave_period option. The default value is 10
# seconds.
#
# repl-ping-slave-period 10

# The following option sets the replication timeout for:
#
# 1) Bulk transfer I/O during SYNC, from the point of view of slave.
# 2) Master timeout from the point of view of slaves (data, pings).
# 3) Slave timeout from the point of view of masters (REPLCONF ACK pings).
#
# It is important to make sure that this value is greater than the value
# specified for repl-ping-slave-period otherwise a timeout will be detected
# every time there is low traffic between the master and the slave.
#
# repl-timeout 60

# Disable TCP_NODELAY on the slave socket after SYNC?
#
# If you select "yes" Memurai will use a smaller number of TCP packets and
# less bandwidth to send data to slaves. But this can add a delay for
# the data to appear on the slave side.
#
# If you select "no" the delay for data to appear on the slave side will
# be reduced but more bandwidth will be used for replication.
#
# By default we optimize for low latency, but in very high traffic conditions
# or when the master and slaves are many hops away, turning this to "yes" may
# be a good idea.
repl-disable-tcp-nodelay no

# Set the replication backlog size. The backlog is a buffer that accumulates
# slave data when slaves are disconnected for some time, so that when a slave
# wants to reconnect again, often a full resync is not needed, but a partial
# resync is enough, just passing the portion of data the slave missed while
# disconnected.
#
# The bigger the replication backlog, the longer the time the slave can be
# disconnected and later be able to perform a partial resynchronization.
#
# The backlog is only allocated once there is at least a slave connected.
#
# repl-backlog-size 1mb

# After a master has no longer connected slaves for some time, the backlog
# will be freed. The following option configures the amount of seconds that
# need to elapse, starting from the time the last slave disconnected, for
# the backlog buffer to be freed.
#
# Note that slaves never free the backlog for timeout, since they may be
# promoted to masters later, and should be able to correctly "partially
# resynchronize" with the slaves: hence they should always accumulate backlog.
#
# A value of 0 means to never release the backlog.
#
# repl-backlog-ttl 3600

# The slave priority is an integer number published by Memurai in the INFO output.
# It is used by Memurai Sentinel in order to select a slave to promote into a
# master if the master is no longer working correctly.
#
# A slave with a low priority number is considered better for promotion, so
# for instance if there are three slaves with priority 10, 100, 25 Sentinel will
# pick the one with priority 10, that is the lowest.
#
# However a special priority of 0 marks the slave as not able to perform the
# role of master, so a slave with priority of 0 will never be selected by
# Memurai Sentinel for promotion.
#
# By default the priority is 100.
slave-priority 100

# It is possible for a master to stop accepting writes if there are less than
# N slaves connected, having a lag less or equal than M seconds.
#
# The N slaves need to be in "online" state.
#
# The lag in seconds, that must be <= the specified value, is calculated from
# the last ping received from the slave, that is usually sent every second.
#
# This option does not GUARANTEE that N replicas will accept the write, but
# will limit the window of exposure for lost writes in case not enough slaves
# are available, to the specified number of seconds.
#
# For example to require at least 3 slaves with a lag <= 10 seconds use:
#
# min-slaves-to-write 3
# min-slaves-max-lag 10
#
# Setting one or the other to 0 disables the feature.
#
# By default min-slaves-to-write is set to 0 (feature disabled) and
# min-slaves-max-lag is set to 10.

# A Memurai master is able to list the address and port of the attached
# slaves in different ways. For example the "INFO replication" section
# offers this information, which is used, among other tools, by
# Memurai Sentinel in order to discover slave instances.
# Another place where this info is available is in the output of the
# "ROLE" command of a master.
#
# The listed IP and address normally reported by a slave is obtained
# in the following way:
#
#   IP: The address is auto detected by checking the peer address
#   of the socket used by the slave to connect with the master.
#
#   Port: The port is communicated by the slave during the replication
#   handshake, and is normally the port that the slave is using to
#   list for connections.
#
# However when port forwarding or Network Address Translation (NAT) is
# used, the slave may be actually reachable via different IP and port
# pairs. The following two options can be used by a slave in order to
# report to its master a specific set of IP and port, so that both INFO
# and ROLE will report those values.
#
# There is no need to use both the options if you need to override just
# the port or the IP address.
#
# slave-announce-ip 5.5.5.5
# slave-announce-port 1234

################################## SECURITY ###################################

# Require clients to issue AUTH <PASSWORD> before processing any other
# commands.  This might be useful in environments in which you do not trust
# others with access to the host running memurai.exe.
#
# This should stay commented out for backward compatibility and because most
# people do not need auth (e.g. they run their own servers).
#
# Warning: since Memurai is pretty fast an outside user can try up to
# 150k passwords per second against a good box. This means that you should
# use a very strong password otherwise it will be very easy to break.
#
# requirepass foobared

# Command renaming.
#
# It is possible to change the name of dangerous commands in a shared
# environment. For instance the CONFIG command may be renamed into something
# hard to guess so that it will still be available for internal-use tools
# but not available for general clients.
#
# Example:
#
# rename-command CONFIG b840fc02d524045429941cc15f59e41cb7be6c52
#
# It is also possible to completely kill a command by renaming it into
# an empty string:
#
# rename-command CONFIG ""
#
# Please note that changing the name of commands that are logged into the
# AOF file or transmitted to slaves may cause problems.

################################### CLIENTS ####################################

# Set the max number of connected clients at the same time. By default
# this limit is set to 10000 clients, however if the Memurai server is not
# able to configure the process file limit to allow for the specified limit
# the max number of allowed clients is set to the current file limit
# minus 32 (as Memurai reserves a few file descriptors for internal uses).
#
# Once the limit is reached Memurai will close all the new connections sending
# an error 'max number of clients reached'.
#
# maxclients 10000

############################## MEMORY MANAGEMENT ################################

# Set a memory usage limit to the specified amount of bytes.
# When the memory limit is reached Memurai will try to remove keys
# according to the eviction policy selected (see maxmemory-policy).
#
# If Memurai can't remove keys according to the policy, or if the policy is
# set to 'noeviction', Memurai will start to reply with errors to commands
# that would use more memory, like SET, LPUSH, and so on, and will continue
# to reply to read-only commands like GET.
#
# This option is usually useful when using Memurai as an LRU or LFU cache, or to
# set a hard memory limit for an instance (using the 'noeviction' policy).
#
# WARNING: If you have slaves attached to an instance with maxmemory on,
# the size of the output buffers needed to feed the slaves are subtracted
# from the used memory count, so that network problems / resyncs will
# not trigger a loop where keys are evicted, and in turn the output
# buffer of slaves is full with DELs of keys evicted triggering the deletion
# of more keys, and so forth until the database is completely emptied.
#
# In short... if you have slaves attached it is suggested that you set a lower
# limit for maxmemory so that there is some free RAM on the system for slave
# output buffers (but this is not needed if the policy is 'noeviction').
#
# WARNING: not setting maxmemory will cause Memurai to terminate with an
# out-of-memory exception if the heap limit is reached.
#
# NOTE: the Working Set memory usage shown by the Windows Task Manager or by
# other tools such as ProcessExplorer will not always be accurate. For example,
# right after a background save of the RDB or the AOF files, the working set
# value may drop significantly. In order to check the correct amount of memory
# used by the memuray.exe to store the data, use the INFO client command.
# The INFO command shows only the memory used to store the Memurai data, not the
# extra memory used by the Windows process for its own requirements. The extra
# amount of memory not reported by the INFO command can be calculated subtracting
# the Peak Working Set reported by the Windows Task Manager and the used_memory_peak
# reported by the INFO command.
# maxmemory <bytes>

# MAXMEMORY POLICY: how Memurai will select what to remove when maxmemory
# is reached. You can select among five behaviors:
#
# volatile-lru -> Evict using approximated LRU among the keys with an expire set.
# allkeys-lru -> Evict any key using approximated LRU.
# volatile-lfu -> Evict using approximated LFU among the keys with an expire set.
# allkeys-lfu -> Evict any key using approximated LFU.
# volatile-random -> Remove a random key among the ones with an expire set.
# allkeys-random -> Remove a random key, any key.
# volatile-ttl -> Remove the key with the nearest expire time (minor TTL)
# noeviction -> Don't evict anything, just return an error on write operations.
#
# LRU means Least Recently Used
# LFU means Least Frequently Used
#
# Both LRU, LFU and volatile-ttl are implemented using approximated
# randomized algorithms.
#
# Note: with any of the above policies, Memurai will return an error on write
#       operations, when there are no suitable keys for eviction.
#
#       At the date of writing these commands are: set setnx setex append
#       incr decr rpush lpush rpushx lpushx linsert lset rpoplpush sadd
#       sinter sinterstore sunion sunionstore sdiff sdiffstore zadd zincrby
#       zunionstore zinterstore hset hsetnx hmset hincrby incrby decrby
#       getset mset msetnx exec sort
#
# The default is:
#
# maxmemory-policy noeviction

# LRU, LFU and minimal TTL algorithms are not precise algorithms but approximated
# algorithms (in order to save memory), so you can tune it for speed or
# accuracy. For default Memurai will check five keys and pick the one that was
# used less recently, you can change the sample size using the following
# configuration directive.
#
# The default of 5 produces good enough results. 10 Approximates very closely
# true LRU but costs more CPU. 3 is faster but not very accurate.
#
# maxmemory-samples 5

############################# LAZY FREEING ####################################

# Memurai has two primitives to delete keys. One is called DEL and is a blocking
# deletion of the object. It means that the server stops processing new commands
# in order to reclaim all the memory associated with an object in a synchronous
# way. If the key deleted is associated with a small object, the time needed
# in order to execute the DEL command is very small and comparable to most other
# O(1) or O(log_N) commands in Memurai. However if the key is associated with an
# aggregated value containing millions of elements, the server can block for
# a long time (even seconds) in order to complete the operation.
#
# For the above reasons Memurai also offers non blocking deletion primitives
# such as UNLINK (non blocking DEL) and the ASYNC option of FLUSHALL and
# FLUSHDB commands, in order to reclaim memory in background. Those commands
# are executed in constant time. Another thread will incrementally free the
# object in the background as fast as possible.
#
# DEL, UNLINK and ASYNC option of FLUSHALL and FLUSHDB are user-controlled.
# It's up to the design of the application to understand when it is a good
# idea to use one or the other. However the Memurai server sometimes has to
# delete keys or flush the whole database as a side effect of other operations.
# Specifically Memurai deletes objects independently of a user call in the
# following scenarios:
#
# 1) On eviction, because of the maxmemory and maxmemory policy configurations,
#    in order to make room for new data, without going over the specified
#    memory limit.
# 2) Because of expire: when a key with an associated time to live (see the
#    EXPIRE command) must be deleted from memory.
# 3) Because of a side effect of a command that stores data on a key that may
#    already exist. For example the RENAME command may delete the old key
#    content when it is replaced with another one. Similarly SUNIONSTORE
#    or SORT with STORE option may delete existing keys. The SET command
#    itself removes any old content of the specified key in order to replace
#    it with the specified string.
# 4) During replication, when a slave performs a full resynchronization with
#    its master, the content of the whole database is removed in order to
#    load the RDB file just transfered.
#
# In all the above cases the default is to delete objects in a blocking way,
# like if DEL was called. However you can configure each case specifically
# in order to instead release memory in a non-blocking way like if UNLINK
# was called, using the following configuration directives:

lazyfree-lazy-eviction no
lazyfree-lazy-expire no
lazyfree-lazy-server-del no
slave-lazy-flush no

############################## APPEND ONLY MODE ###############################

# By default Memurai asynchronously dumps the dataset on disk. This mode is
# good enough in many applications, but an issue with the Memurai process or
# a power outage may result into a few minutes of writes lost (depending on
# the configured save points).
#
# The Append Only File is an alternative persistence mode that provides
# much better durability. For instance using the default data fsync policy
# (see later in the config file) Memurai can lose just one second of writes in a
# dramatic event like a server power outage, or a single write if something
# wrong with the Memurai process itself happens, but the operating system is
# still running correctly.
#
# AOF and RDB persistence can be enabled at the same time without problems.
# If the AOF is enabled on startup Memurai will load the AOF, that is the file
# with the better durability guarantees.
#
# Please check http://redis.io/topics/persistence for more information.

appendonly no

# The name of the append only file (default: "appendonly.aof")

appendfilename "appendonly.aof"

# The fsync() call tells the Operating System to actually write data on disk
# instead of waiting for more data in the output buffer. Some OS will really flush
# data on disk, some other OS will just try to do it ASAP.
#
# Memurai supports three different modes:
#
# no: don't fsync, just let the OS flush the data when it wants. Faster.
# always: fsync after every write to the append only log. Slow, Safest.
# everysec: fsync only one time every second. Compromise.
#
# The default is "everysec", as that's usually the right compromise between
# speed and data safety. It's up to you to understand if you can relax this to
# "no" that will let the operating system flush the output buffer when
# it wants, for better performances (but if you can live with the idea of
# some data loss consider the default persistence mode that's snapshotting),
# or on the contrary, use "always" that's very slow but a bit safer than
# everysec.
#
# More details please check the following article:
# http://antirez.com/post/redis-persistence-demystified.html
#
# If unsure, use "everysec".

# appendfsync always
appendfsync everysec
# appendfsync no

# When the AOF fsync policy is set to always or everysec, and a background
# saving process (a background save or AOF log background rewriting) is
# performing a lot of I/O against the disk, Memurai may block too long on the
# fsync() call. Note that there is no fix for this currently, as even performing
# fsync in a different thread will block our synchronous write call.
#
# In order to mitigate this problem it's possible to use the following option
# that will prevent fsync() from being called in the main process while a
# BGSAVE or BGREWRITEAOF is in progress.
#
# This means that while another child is saving, the durability of Memurai is
# the same as "appendfsync none". In practical terms, this means that it is
# possible to lose up to 30 seconds of log in the worst scenario.
#
# If you have latency problems turn this to "yes". Otherwise leave it as
# "no" that is the safest pick from the point of view of durability.

no-appendfsync-on-rewrite no

# Automatic rewrite of the append only file.
# Memurai is able to automatically rewrite the log file implicitly calling
# BGREWRITEAOF when the AOF log size grows by the specified percentage.
#
# This is how it works: Memurai remembers the size of the AOF file after the
# latest rewrite (if no rewrite has happened since the restart, the size of
# the AOF at startup is used).
#
# This base size is compared to the current size. If the current size is
# bigger than the specified percentage, the rewrite is triggered. Also
# you need to specify a minimal size for the AOF file to be rewritten, this
# is useful to avoid rewriting the AOF file even if the percentage increase
# is reached but it is still pretty small.
#
# Specify a percentage of zero in order to disable the automatic AOF
# rewrite feature.

auto-aof-rewrite-percentage 100
auto-aof-rewrite-min-size 64mb

# An AOF file may be found to be truncated at the end during the Memurai
# startup process, when the AOF data gets loaded back into memory.
# This may happen when the system where Memurai is running
# crashes, especially when an ext4 filesystem is mounted without the
# data=ordered option (however this can't happen when Memurai itself
# crashes or aborts but the operating system still works correctly).
#
# Memurai can either exit with an error when this happens, or load as much
# data as possible (the default now) and start if the AOF file is found
# to be truncated at the end. The following option controls this behavior.
#
# If aof-load-truncated is set to yes, a truncated AOF file is loaded and
# the Memurai server starts emitting a log to inform the user of the event.
# Otherwise if the option is set to no, the server aborts with an error
# and refuses to start. When the option is set to no, the user requires
# to fix the AOF file using the "memurai-check-aof" utility before to restart
# the server.
#
# Note that if the AOF file will be found to be corrupted in the middle
# the server will still exit with an error. This option only applies when
# Memurai will try to read more data from the AOF file but not enough bytes
# will be found.
aof-load-truncated yes

# When rewriting the AOF file, Memurai is able to use an RDB preamble in the
# AOF file for faster rewrites and recoveries. When this option is turned
# on the rewritten AOF file is composed of two different stanzas:
#
#   [RDB file][AOF tail]
#
# When loading Memurai recognizes that the AOF file starts with the "REDIS"
# string (to be compatible with the Redis API) and loads the prefixed RDB file,
# and continues loading the AOF tail.
#
# This is currently turned off by default in order to avoid the surprise
# of a format change, but will at some point be used as the default.
aof-use-rdb-preamble no

################################ LUA SCRIPTING  ###############################

# Max execution time of a Lua script in milliseconds.
#
# If the maximum execution time is reached Memurai will log that a script is
# still in execution after the maximum allowed time and will start to
# reply to queries with an error.
#
# When a long running script exceeds the maximum execution time only the
# SCRIPT KILL and SHUTDOWN NOSAVE commands are available. The first can be
# used to stop a script that did not yet called write commands. The second
# is the only way to shut down the server in the case a write command was
# already issued by the script but the user doesn't want to wait for the natural
# termination of the script.
#
# Set it to 0 or a negative value for unlimited execution without warnings.
lua-time-limit 5000

################################ MEMURAI CLUSTER  #############################

# Normal Memurai instances can't be part of a Memurai Cluster; only nodes that are
# started as cluster nodes can. In order to start a Memurai instance as a
# cluster node enable the cluster support uncommenting the following:
#
# cluster-enabled yes

# Every cluster node has a cluster configuration file. This file is not
# intended to be edited by hand. It is created and updated by Memurai nodes.
# Every Memurai Cluster node requires a different cluster configuration file.
# Make sure that instances running in the same system do not have
# overlapping cluster configuration file names.
#
# cluster-config-file nodes-6379.conf

# Cluster node timeout is the amount of milliseconds a node must be unreachable
# for it to be considered in failure state.
# Most other internal time limits are multiple of the node timeout.
#
# cluster-node-timeout 15000

# A slave of a failing master will avoid to start a failover if its data
# looks too old.
#
# There is no simple way for a slave to actually have an exact measure of
# its "data age", so the following two checks are performed:
#
# 1) If there are multiple slaves able to failover, they exchange messages
#    in order to try to give an advantage to the slave with the best
#    replication offset (more data from the master processed).
#    Slaves will try to get their rank by offset, and apply to the start
#    of the failover a delay proportional to their rank.
#
# 2) Every single slave computes the time of the last interaction with
#    its master. This can be the last ping or command received (if the master
#    is still in the "connected" state), or the time that elapsed since the
#    disconnection with the master (if the replication link is currently down).
#    If the last interaction is too old, the slave will not try to failover
#    at all.
#
# The point "2" can be tuned by user. Specifically a slave will not perform
# the failover if, since the last interaction with the master, the time
# elapsed is greater than:
#
#   (node-timeout * slave-validity-factor) + repl-ping-slave-period
#
# So for example if node-timeout is 30 seconds, and the slave-validity-factor
# is 10, and assuming a default repl-ping-slave-period of 10 seconds, the
# slave will not try to failover if it was not able to talk with the master
# for longer than 310 seconds.
#
# A large slave-validity-factor may allow slaves with too old data to failover
# a master, while a too small value may prevent the cluster from being able to
# elect a slave at all.
#
# For maximum availability, it is possible to set the slave-validity-factor
# to a value of 0, which means, that slaves will always try to failover the
# master regardless of the last time they interacted with the master.
# (However they'll always try to apply a delay proportional to their
# offset rank).
#
# Zero is the only value able to guarantee that when all the partitions heal
# the cluster will always be able to continue.
#
# cluster-slave-validity-factor 10

# Cluster slaves are able to migrate to orphaned masters, that are masters
# that are left without working slaves. This improves the cluster ability
# to resist to failures as otherwise an orphaned master can't be failed over
# in case of failure if it has no working slaves.
#
# Slaves migrate to orphaned masters only if there are still at least a
# given number of other working slaves for their old master. This number
# is the "migration barrier". A migration barrier of 1 means that a slave
# will migrate only if there is at least 1 other working slave for its master
# and so forth. It usually reflects the number of slaves you want for every
# master in your cluster.
#
# Default is 1 (slaves migrate only if their masters remain with at least
# one slave). To disable migration just set it to a very large value.
# A value of 0 can be set but is useful only for debugging and dangerous
# in production.
#
# cluster-migration-barrier 1

# By default Memurai Cluster nodes stop accepting queries if they detect there
# is at least an hash slot uncovered (no available node is serving it).
# This way if the cluster is partially down (for example a range of hash slots
# are no longer covered) all the cluster becomes, eventually, unavailable.
# It automatically returns available as soon as all the slots are covered again.
#
# However sometimes you want the subset of the cluster which is working,
# to continue to accept queries for the part of the key space that is still
# covered. In order to do so, just set the cluster-require-full-coverage
# option to no.
#
# cluster-require-full-coverage yes

# This option, when set to yes, prevents slaves from trying to failover its
# master during master failures. However the master can still perform a
# manual failover, if forced to do so.
#
# This is useful in different scenarios, especially in the case of multiple
# data center operations, where we want one side to never be promoted if not
# in the case of a total DC failure.
#
# cluster-slave-no-failover no

# In order to setup your cluster make sure to read the documentation
# available at http://redis.io web site.

########################## CLUSTER DOCKER/NAT support  ########################

# In certain deployments, Memurai Cluster nodes address discovery fails, because
# addresses are NAT-ted or because ports are forwarded (the typical case is
# Docker and other containers).
#
# In order to make Memurai Cluster working in such environments, a static
# configuration where each node knows its public address is needed. The
# following two options are used for this scope, and are:
#
# * cluster-announce-ip
# * cluster-announce-port
# * cluster-announce-bus-port
#
# Each instruct the node about its address, client port, and cluster message
# bus port. The information is then published in the header of the bus packets
# so that other nodes will be able to correctly map the address of the node
# publishing the information.
#
# If the above options are not used, the normal Memurai Cluster auto-detection
# will be used instead.
#
# Note that when remapped, the bus port may not be at the fixed offset of
# clients port + 10000, so you can specify any port and bus-port depending
# on how they get remapped. If the bus-port is not set, a fixed offset of
# 10000 will be used as usually.
#
# Example:
#
# cluster-announce-ip 10.1.1.5
# cluster-announce-port 6379
# cluster-announce-bus-port 6380

################################## SLOW LOG ###################################

# The Memurai Slow Log is a system to log queries that exceeded a specified
# execution time. The execution time does not include the I/O operations
# like talking with the client, sending the reply and so forth,
# but just the time needed to actually execute the command (this is the only
# stage of command execution where the thread is blocked and can not serve
# other requests in the meantime).
#
# You can configure the slow log with two parameters: one tells Memurai
# what is the execution time, in microseconds, to exceed in order for the
# command to get logged, and the other parameter is the length of the
# slow log. When a new command is logged the oldest one is removed from the
# queue of logged commands.

# The following time is expressed in microseconds, so 1000000 is equivalent
# to one second. Note that a negative number disables the slow log, while
# a value of zero forces the logging of every command.
slowlog-log-slower-than 10000

# There is no limit to this length. Just be aware that it will consume memory.
# You can reclaim memory used by the slow log with SLOWLOG RESET.
slowlog-max-len 128

################################ LATENCY MONITOR ##############################

# The Memurai latency monitoring subsystem samples different operations
# at runtime in order to collect data related to possible sources of
# latency of a Memurai instance.
#
# Via the LATENCY command this information is available to the user that can
# print graphs and obtain reports.
#
# The system only logs operations that were performed in a time equal or
# greater than the amount of milliseconds specified via the
# latency-monitor-threshold configuration directive. When its value is set
# to zero, the latency monitor is turned off.
#
# By default latency monitoring is disabled since it is mostly not needed
# if you don't have latency issues, and collecting data has a performance
# impact, that while very small, can be measured under big load. Latency
# monitoring can easily be enabled at runtime using the command
# "CONFIG SET latency-monitor-threshold <milliseconds>" if needed.
latency-monitor-threshold 0

############################# EVENT NOTIFICATION ##############################

# Memurai can notify Pub/Sub clients about events happening in the key space.
# This feature is documented at http://redis.io/topics/notifications
#
# For instance if keyspace events notification is enabled, and a client
# performs a DEL operation on key "foo" stored in the Database 0, two
# messages will be published via Pub/Sub:
#
# PUBLISH [email protected]__:foo del
# PUBLISH [email protected]__:del foo
#
# It is possible to select the events that Memurai will notify among a set
# of classes. Every class is identified by a single character:
#
#  K     Keyspace events, published with [email protected]<db>__ prefix.
#  E     Keyevent events, published with [email protected]<db>__ prefix.
#  g     Generic commands (non-type specific) like DEL, EXPIRE, RENAME, ...
#  $     String commands
#  l     List commands
#  s     Set commands
#  h     Hash commands
#  z     Sorted set commands
#  x     Expired events (events generated every time a key expires)
#  e     Evicted events (events generated when a key is evicted for maxmemory)
#  A     Alias for g$lshzxe, so that the "AKE" string means all the events.
#
#  The "notify-keyspace-events" takes as argument a string that is composed
#  of zero or multiple characters. The empty string means that notifications
#  are disabled.
#
#  Example: to enable list and generic events, from the point of view of the
#           event name, use:
#
#  notify-keyspace-events Elg
#
#  Example 2: to get the stream of the expired keys subscribing to channel
#             name [email protected]__:expired use:
#
#  notify-keyspace-events Ex
#
#  By default all notifications are disabled because most users don't need
#  this feature and the feature has some overhead. Note that if you don't
#  specify at least one of K or E, no events will be delivered.
notify-keyspace-events ""

############################### ADVANCED CONFIG ###############################

# Hashes are encoded using a memory efficient data structure when they have a
# small number of entries, and the biggest entry does not exceed a given
# threshold. These thresholds can be configured using the following directives.
hash-max-ziplist-entries 512
hash-max-ziplist-value 64

# Lists are also encoded in a special way to save a lot of space.
# The number of entries allowed per internal list node can be specified
# as a fixed maximum size or a maximum number of elements.
# For a fixed maximum size, use -5 through -1, meaning:
# -5: max size: 64 Kb  <-- not recommended for normal workloads
# -4: max size: 32 Kb  <-- not recommended
# -3: max size: 16 Kb  <-- probably not recommended
# -2: max size: 8 Kb   <-- good
# -1: max size: 4 Kb   <-- good
# Positive numbers mean store up to _exactly_ that number of elements
# per list node.
# The highest performing option is usually -2 (8 Kb size) or -1 (4 Kb size),
# but if your use case is unique, adjust the settings as necessary.
list-max-ziplist-size -2

# Lists may also be compressed.
# Compress depth is the number of quicklist ziplist nodes from *each* side of
# the list to *exclude* from compression.  The head and tail of the list
# are always uncompressed for fast push/pop operations.  Settings are:
# 0: disable all list compression
# 1: depth 1 means "don't start compressing until after 1 node into the list,
#    going from either the head or tail"
#    So: [head]->node->node->...->node->[tail]
#    [head], [tail] will always be uncompressed; inner nodes will compress.
# 2: [head]->[next]->node->node->...->node->[prev]->[tail]
#    2 here means: don't compress head or head->next or tail->prev or tail,
#    but compress all nodes between them.
# 3: [head]->[next]->[next]->node->node->...->node->[prev]->[prev]->[tail]
# etc.
list-compress-depth 0

# Sets have a special encoding in just one case: when a set is composed
# of just strings that happen to be integers in radix 10 in the range
# of 64 bit signed integers.
# The following configuration setting sets the limit in the size of the
# set in order to use this special memory saving encoding.
set-max-intset-entries 512

# Similarly to hashes and lists, sorted sets are also specially encoded in
# order to save a lot of space. This encoding is only used when the length and
# elements of a sorted set are below the following limits:
zset-max-ziplist-entries 128
zset-max-ziplist-value 64

# HyperLogLog sparse representation bytes limit. The limit includes the
# 16 bytes header. When an HyperLogLog using the sparse representation crosses
# this limit, it is converted into the dense representation.
#
# A value greater than 16000 is totally useless, since at that point the
# dense representation is more memory efficient.
#
# The suggested value is ~ 3000 in order to have the benefits of
# the space efficient encoding without slowing down too much PFADD,
# which is O(N) with the sparse encoding. The value can be raised to
# ~ 10000 when CPU is not a concern, but space is, and the data set is
# composed of many HyperLogLogs with cardinality in the 0 - 15000 range.
hll-sparse-max-bytes 3000

# Active rehashing uses 1 millisecond every 100 milliseconds of CPU time in
# order to help rehashing the main Memurai hash table (the one mapping top-level
# keys to values). The hash table implementation Memurai uses performs a lazy
# rehashing: the more operation you run into a hash table that is rehashing,
# the more rehashing "steps" are performed, so if the server is idle the rehashing
# is never complete and some more memory is used by the hash table.
#
# The default is to use this millisecond 10 times every second in order to
# actively rehash the main dictionaries, freeing memory when possible.
#
# If unsure:
# use "activerehashing no" if you have hard latency requirements and it is
# not a good thing in your environment that Memurai can reply from time to time
# to queries with 2 milliseconds delay.
#
# use "activerehashing yes" if you don't have such hard requirements but
# want to free memory asap when possible.
activerehashing yes

# The client output buffer limits can be used to force disconnection of clients
# that are not reading data from the server fast enough for some reason (a
# common reason is that a Pub/Sub client can't consume messages as fast as the
# publisher can produce them).
#
# The limit can be set differently for the three different classes of clients:
#
# normal -> normal clients including MONITOR clients
# slave  -> slave clients
# pubsub -> clients subscribed to at least one pubsub channel or pattern
#
# The syntax of every client-output-buffer-limit directive is the following:
#
# client-output-buffer-limit <class> <hard limit> <soft limit> <soft seconds>
#
# A client is immediately disconnected once the hard limit is reached, or if
# the soft limit is reached and remains reached for the specified number of
# seconds (continuously).
# So for instance if the hard limit is 32 megabytes and the soft limit is
# 16 megabytes / 10 seconds, the client will get disconnected immediately
# if the size of the output buffers reach 32 megabytes, but will also get
# disconnected if the client reaches 16 megabytes and continuously overcomes
# the limit for 10 seconds.
#
# By default normal clients are not limited because they don't receive data
# without asking (in a push way), but just after a request, so only
# asynchronous clients may create a scenario where data is requested faster
# than it can read.
#
# Instead there is a default limit for pubsub and slave clients, since
# subscribers and slaves receive data in a push fashion.
#
# Both the hard or the soft limit can be disabled by setting them to zero.
client-output-buffer-limit normal 0 0 0
client-output-buffer-limit slave 256mb 64mb 60
client-output-buffer-limit pubsub 32mb 8mb 60

# Client query buffers accumulate new commands. They are limited to a fixed
# amount by default in order to avoid that a protocol desynchronization (for
# instance due to a bug in the client) will lead to unbound memory usage in
# the query buffer. However you can configure it here if you have very special
# needs, such us huge multi/exec requests or alike.
#
# client-query-buffer-limit 1gb

# In the Memurai protocol, bulk requests, that are, elements representing single
# strings, are normally limited ot 512 mb. However you can change this limit
# here.
#
# proto-max-bulk-len 512mb

# Memurai calls an internal function to perform many background tasks, like
# closing connections of clients in timeot, purging expired keys that are
# never requested, and so forth.
#
# Not all tasks are perforemd with the same frequency, but Memurai checks for
# tasks to perform according to the specified "hz" value.
#
# By default "hz" is set to 10. Raising the value will use more CPU when
# Memurai is idle, but at the same time will make Memurai more responsive when
# there are many keys expiring at the same time, and timeouts may be
# handled with more precision.
#
# The range is between 1 and 500, however a value over 100 is usually not
# a good idea. Most users should use the default of 10 and raise this up to
# 100 only in environments where very low latency is required.
hz 10

# When a child rewrites the AOF file, if the following option is enabled
# the file will be fsync-ed every 32 MB of data generated. This is useful
# in order to commit the file to the disk more incrementally and avoid
# big latency spikes.
aof-rewrite-incremental-fsync yes

# Memurai LFU eviction (see maxmemory setting) can be tuned. However it is a good
# idea to start with the default settings and only change them after investigating
# how to improve the performances and how the keys LFU change over time, which
# is possible to inspect via the OBJECT FREQ command.
#
# There are two tunable parameters in the Memurai LFU implementation: the
# counter logarithm factor and the counter decay time. It is important to
# understand what the two parameters mean before changing them.
#
# The LFU counter is just 8 bits per key, its maximum value is 255, so Memurai
# uses a probabilistic increment with logarithmic behavior. Given the value
# of the old counter, when a key is accessed, the counter is incremented in
# this way:
#
# 1. A random number R between 0 and 1 is extracted.
# 2. A probability P is calculated as 1/(old_value*lfu_log_factor+1).
# 3. The counter is incremented only if R < P.
#
# The default lfu-log-factor is 10. This is a table showing an example of how
# the frequency counter changes with a different number of accesses with
# different logarithmic factors:
#
# +--------+------------+------------+------------+------------+------------+
# | factor | 100 hits   | 1000 hits  | 100K hits  | 1M hits    | 10M hits   |
# +--------+------------+------------+------------+------------+------------+
# | 0      | 104        | 255        | 255        | 255        | 255        |
# +--------+------------+------------+------------+------------+------------+
# | 1      | 18         | 49         | 255        | 255        | 255        |
# +--------+------------+------------+------------+------------+------------+
# | 10     | 10         | 18         | 142        | 255        | 255        |
# +--------+------------+------------+------------+------------+------------+
# | 100    | 8          | 11         | 49         | 143        | 255        |
# +--------+------------+------------+------------+------------+------------+
#
# NOTE: The counter initial value is 5 in order to give new objects a chance
# to accumulate hits.
#
# The counter decay time is the time, in minutes, that must elapse in order
# for the key counter to be divided by two (or decremented if it has a value
# less <= 10).
#
# The default value for the lfu-decay-time is 1. A Special value of 0 means to
# decay the counter every time it happens to be scanned.
#
# lfu-log-factor 10
# lfu-decay-time 1

########################### UNSUPPORTED FLAGS #######################

# These are flags supported by Redis API version 5 but not supported by Memurai.
# If these flags are present in the configuration file, Memurai will simply
# ignore them and not cause a fatal error.

# always-show-logo
# activedefrag
# active-defrag-ignore-bytes
# active-defrag-threshold-lower
# active-defrag-threshold-upper
# active-defrag-cycle-min
# active-defrag-cycle-max
# daemonize
# supervised
# syslog-enabled
# syslog-ident
# syslog-facility
# unixsocket
# unixsocketperm

#################### End of UNSUPPORTED FLAGS #######################

tools\VERIFICATION.txt
VERIFICATION
Verification is intended to assist the Chocolatey moderators and community
in verifying that this package's contents are trustworthy.
 
This package is published by the Memurai Project itself. All binaries are signed.

Log in or click on link to see number of positives.

In cases where actual malware is found, the packages are subject to removal. Software sometimes has false positives. Moderators do not necessarily validate the safety of the underlying software, only that a package retrieves software from the official distribution point and/or validate embedded software against official distribution point (where distribution rights allow redistribution).

Chocolatey Pro provides runtime protection from possible malware.

Version Downloads Last Updated Status
Memurai Developer (Portable) 2.0.2 75 Monday, July 20, 2020 Approved
Memurai Developer (Portable) 2.0.1 37 Wednesday, June 24, 2020 Approved
Memurai Developer (Portable) 2.0.0 78 Monday, May 11, 2020 Approved

The release notes are available here


This package has no dependencies.

Discussion for the Memurai Developer (Portable) Package

Ground Rules:

  • This discussion is only about Memurai Developer (Portable) and the Memurai Developer (Portable) package. If you have feedback for Chocolatey, please contact the Google Group.
  • This discussion will carry over multiple versions. If you have a comment about a particular version, please note that in your comments.
  • The maintainers of this Chocolatey Package will be notified about new comments that are posted to this Disqus thread, however, it is NOT a guarantee that you will get a response. If you do not hear back from the maintainers after posting a message below, please follow up by using the link on the left side of this page or follow this link to contact maintainers. If you still hear nothing back, please follow the package triage process.
  • Tell us what you love about the package or Memurai Developer (Portable), or tell us what needs improvement.
  • Share your experiences with the package, or extra configuration or gotchas that you've found.
  • If you use a url, the comment will be flagged for moderation until you've been whitelisted. Disqus moderated comments are approved on a weekly schedule if not sooner. It could take between 1-5 days for your comment to show up.
comments powered by Disqus